Discrete Wigner distribution for two qubits: a characterization of entanglement properties
نویسندگان
چکیده
We study the properties of the discrete Wigner distribution for two qubits introduced by Wotters. In particular, we analyze the entanglement properties within the Wigner distribution picture by considering the negativity of the Wigner function (WF) and the correlations of the marginal distribution. We show that a state is entangled if at least one among the values assumed by the corresponding discrete WF is smaller than a certain critical (negative) value. Then, based on the Partial Transposition criterion, we establish the relation between the separability of a density matrix and the non-negativity of the WF’s relevant both to such a density matrix and to the partially transposed thereof. Finally, we derive a simple inequality –involving the covariance-matrix elements of a given WF– which appears to provide a separability criterion stronger than the one based on the Local Uncertainty Relations. PACS numbers: 03.67.Mn, 03.65.Wj, 42.50.Dv § To whom correspondence should be addressed [email protected] Discrete Wigner distribution for two qubits: a characterization... 2
منابع مشابه
Discrete phase-space structures and Wigner functions for N qubits
We further elaborate on a phase-space picture for a system of N qubits and explore the structures compatible with the notion of unbiasedness. These consist of bundles of discrete curves satisfying certain additional properties and different entanglement properties. We discuss the construction of discrete covariant Wigner functions for these bundles and provide several illuminating examples.
متن کاملDiscrete Coherent States for N Qubits
Received Day Month Year Revised Day Month Year Discrete coherent states for a system of n qubits are introduced in terms of eigenstates of the finite Fourier transform. The properties of these states are pictured in phase space by resorting to the discrete Wigner function.
متن کاملMutually unbiased bases and discrete Wigner functions
Mutually unbiased bases and discrete Wigner functions are closely, but not uniquely related. Such a connection becomes more interesting when the Hilbert space has a dimension that is a power of a primeN = d, which describes a composite system of n qudits. Hence, entanglement naturally enters the picture. Although our results are general, we concentrate on the simplest nontrivial example of dime...
متن کاملحفظ و مقایسه درهمتنیدگی، ناسازگاری و همدوسی کوانتومی بین کیوبیتهای متحرک در کاواکهای نشت کننده
In this study, we consider a composed system consisting of two identical non-interacting subsystems. Each sub-system is made of a moving qubit into a leaky cavity. The study of the dynamic of the composed system revealed that compared with the stationary qubits, entanglement, quantum discord and coherence between two moving qubits remained close to their initial values as time went by. In parti...
متن کاملDiscrete Wigner Function Derivation of the Aaronson-Gottesman Tableau Algorithm
The Gottesman–Knill theorem established that stabilizer states and Clifford operations can be efficiently simulated classically. For qudits with odd dimension three and greater, stabilizer states and Clifford operations have been found to correspond to positive discrete Wigner functions and dynamics. We present a discrete Wigner function-based simulation algorithm for odd-d qudits that has the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005